Streamline Curvature Throughflow Analysis Essay

  • 1.

    Gümmer V, Wenger U, Kau H P. Using sweep and dihedral to control three-dimensional flow in transonic stators of axial compressors. J Turbomach, 2001, 123: 40–48CrossRefGoogle Scholar

  • 2.

    Song Y, Gu C W. Effects of curvature continuity of compressor blade profiles on their performances. ASME Turbo Expo 2014, Düsseldorf, 2014, GT2014-25804Google Scholar

  • 3.

    Cumpsty N A. Some lessons learned. J Turbomach, 2010, 132: 041018.1–7Google Scholar

  • 4.

    Gbadebo S A, Cumpsty N A, Hynes T P. Three-dimensional separations in axial compressors. Jurbomach, 2005, 127: 331–339CrossRefGoogle Scholar

  • 5.

    Huang D G, Wu G Q. Preliminary study on the aerodynamic characteristics of an adaptive reconfigurable airfoil. Aerosp Sci Technol, 2013, 27: 44–48CrossRefGoogle Scholar

  • 6.

    Wang Y, Sun X J, Dai Y J, et al. Numerical investigation of drag reduction byheat-enhanced cavitation. Appl Therm Eng, 2015, 75: 193–202CrossRefGoogle Scholar

  • 7.

    Lichtfuss H J. Customized profiles—The beginning of an era: a short history of blade design. ASME Turbo Expo 2004, Vienna, 2004, GT2004-53742Google Scholar

  • 8.

    Hao Z, Gu C, Song Y. Discontinuous galerkin finite element methods for numerical simulations of thermoelasticity. J Therm Stresses, 2015, 38: 983–1004CrossRefGoogle Scholar

  • 9.

    Denton J, Dawes W. Computational fluid dynamics for turbomachinery design. P I Mech Eng C-J Mec, 1998, 213: 107–124CrossRefGoogle Scholar

  • 10.

    Cumpsty N A. Compressor aerodynamics. London: Longman Scientific & Technical, 1989, 93–131Google Scholar

  • 11.

    Boyer K M. An improved streamline curvature approach for offdesign analysis of transonic compression systems. Dissertation of Doctor Degree. Blacksburg: Virginia Polytechnic Institute and State University, 2001Google Scholar

  • 12.

    Wu C H. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial, and mixed-flow types. NACA-TN-2604. NACA, 1952Google Scholar

  • 13.

    Smith L. The radial-equilibrium equation of turbomachinery. J Eng Power, 1966, 88: 1–11CrossRefGoogle Scholar

  • 14.

    Swan W. A practical method of predicting transonic-compressor performance. J Eng Power, 1961, 83: 322–330CrossRefGoogle Scholar

  • 15.

    Novak R. Streamline curvature computing procedures for fluid-flow problems. J Eng Power, 1967, 89: 478–490Google Scholar

  • 16.

    Bryans A, Miller M. Computer program for design of multistage axial- flow compressors. NASA-CR-54530, NASA, 1967Google Scholar

  • 17.

    Hirsch C, Warzee G. A finite-element method for through flow calculations in turbomachines. J Fluid Eng, 1976, 98: 403–415CrossRefGoogle Scholar

  • 18.

    Miller G R, Hartmann M J. Experimental shock configurations and shock losses in a transonic-compressor rotor at design speed. NACA RM-E58A14B. NACA, 1958Google Scholar

  • 19.

    Oldham R K. Some design data for double circular arc compressor blading. NGTE Note NT. 589, 1965Google Scholar

  • 20.

    Creveling H F, Carmody R H. Axial flow compressor computer program for calculating off-design performance (Program IV). NASA-CR-72427, NASA, August 1968Google Scholar

  • 21.

    Koch C, Smith L. Loss sources and magnitudes in axial-flow compressors. J Eng Power, 1976, 98: 411–424CrossRefGoogle Scholar

  • 22.

    Adkins G G, Smith L H. Spanwise mixing in axial-flow turbomachines. J Eng Power, 1982, 104: 97–110CrossRefGoogle Scholar

  • 23.

    Gallimore S J, Cumpsty N. Spanwise mixing in multistage axial flow compressors. II: Throughflow calculations including mixing. J Turbomach, 1986; 108: 2–16CrossRefGoogle Scholar

  • 24.

    Lieblein S. Loss and stall analysis of compressor cascades. ASME J Basic Eng, 1959, 81: 387–400Google Scholar

  • 25.

    Cetin M, Uecer A, Hirsch C, et al. Application of modified loss and deviation correlations to transonic axial compressors. AGARD-R-745, Advisory Group For Aerospace Research and Development Neuilly-Sur-Seine (Fran Ce), 1987Google Scholar

  • 26.

    Konig W, Hennecke D, Fottner L. Improved blade profile loss and deviation angle models for advanced transonic compressor bladings. 1. A model for subsonic flow. J Turbomach, 1996, 118: 73–80CrossRefGoogle Scholar

  • 27.

    Konig W, Hennecke D, Fottner L. Improved blade profile loss and deviation angle models for advanced transonic compressor bladings. 2. A model for supersonic flow. J Turbomach, 1996, 118: 81–87CrossRefGoogle Scholar

  • 28.

    Pachidis V, Pilidis P, Templalexis I, et al. An iterative method for blade profile loss model adaptation using streamline curvature. J Eng Gas Turb Power, 2008, 130: 011702.1–8Google Scholar

  • 29.

    Li H B, Gu C, Song Y. Through-flow calculation with a cooling model for cooled turbines. P I Mech Eng A-J Pow, 2015, doi: 0957650915594294Google Scholar

  • 30.

    Turner M G, Merchant A, Bruna D. A turbomachinery design tool for teaching design concepts for axial-flow fans, compressors, and turbines. ASME Turbo Expo 2006, Barcelona, 2006, GT2006-90105Google Scholar

  • 31.

    Petrovic M V, Wiedermann A, Banjac M B. Development and validation of a new universal through flow method for axial compressors. P I Mech Eng A-J Pow, 2010, 224: 869–880Google Scholar

  • 32.

    Song Y, Gu C W, Xiao Y B. Numerical and theoretical investigations concerning the continuous-surface-curvature effect in compressor blades. Energies, 2014, 7: 8150–5177CrossRefGoogle Scholar

  • 33.

    Song Y, Gu C W, Ji X X. Development and validation of a full-range performance analysis model for a three-spool gas turbine with turbine cooling. Energy, 2015, 89: 545–557CrossRefGoogle Scholar

  • 34.

    Wang J, Gu C, Sunden B A. Conjugated heat transfer analysis of a film cooling passage with different rib configurations. Int J Numer Method H, 2015, 25: 841–860CrossRefGoogle Scholar

  • 35.

    Lieblein S, Roudebush W H. Theoretical loss relations for low-speed two-dimensional-cascade flow. NACA TN 3662, NACA, 1956Google Scholar

  • 36.

    Petrovic M V, Wiedermann A, Banjac M B. Development and validation of a new universal through flow method for axial compressors. ASME Turbo Expo 2009, Orlando, 2009, GT2009-59938Google Scholar

  • 37.

    Carter A. The low speed performance of related aerofoils in cascade. ARC CP29, His Maj. Stat. Office, 1950Google Scholar

  • 38.

    Creveling H F, Carmody R H. Axial flow compressor computer program for calculating off-design performance. NASA-CR-72472, NASA, 1968Google Scholar

  • 39.

    Hearsey R M. Program HT0300 NASA 1994 version. D6-81569TN, 1994Google Scholar

  • 40.

    Howell A. Fluid dynamics of axial compressors. P I Mech Eng, 1945, 153: 441–452Google Scholar

  • 41.

    Fouflias D, Gannan A, Ramsden K, et al. Experimental investigation of the influence of fouling on compressor cascade characteristics and implications for gas turbine engine performance. P I Mech Eng A-J Pow, 2010, 224: 1007–1018CrossRefGoogle Scholar

  • 42.

    Eftari M, Jouybari H J, Shahhoseini M R, et al. Performance prediction modeling of axial-flow compressor by flow equations. J Mech Res Appl, 2011, 3: 49–55Google Scholar

  • 43.

    Lakshminarayana B. Methods of predicting the tip clearance effects in axial flow turbomachinery. J Basic Eng, 1970, 92: 467–482CrossRefGoogle Scholar

  • 44.

    Miller G R, Lewis G W, Hartmann M J. Shock losses in transonic compressor blade rows. J Eng Power, 1961, 83: 235–242CrossRefGoogle Scholar

  • 45.

    Bloch G S, Copenhaver W W, O’Brien W F. A shock loss model for supersonic compressor cascades. J Turbomach, 1999, 121: 28–35CrossRefGoogle Scholar

  • 46.

    Boyer K M O’Brien W F. An improved streamline curvature approach for off-design analysis of transonic axial compression systems. ASME Turbo Expo 2002, Amsterdam, 2002, GT2002-30444Google Scholar

  • 47.

    Moeckel W E. Approximate method for predicition form and location of detached shock waves ahead of plane or axially symmetric bodies, NACA TN 1921, NACA, 1949Google Scholar

  • 48.

    Howard M, Gallimore S. Viscous throughflow modeling for multistage compressor design. J Turbomach, 1993, 115: 296–304CrossRefGoogle Scholar

  • 49.

    Koch C. Stalling pressure rise capability of axial flow compressor stages. J Eng Power, 1981, 103: 645–656CrossRefGoogle Scholar

  • 50.

    Burdsall E A, Canal E, Lyons K A. Core compressor exit stage study-1: Aerodynamic and mechanical design. NASA CR-159714, NASA, 1979Google Scholar

  • 51.

    Behlke R F, Burdsall E A, Canal E, et al. Core compressor exit stage study-2: Final Report. NASA CR-159812, NASA, 1979Google Scholar

  • 52.

    Seyler D, Smith L. Single stage experimental evaluation of high Mach number compressor rotor blading, part 1: Design of rotor blading. NASA CR-54581, NASA, 1967Google Scholar

  • 53.

    Seyler D, Gestolow J. Single stage experimental evaluation of high Mach number compressor rotor blading, part 2: Performance of Rotor 1B. NASA CR-54582, NASA, 1967Google Scholar

  • 54.

    Wisler D, Koch C, Smith L. Preliminary design study of advanced multistage axial flow core compressors. NASA CR-135133, NASA, 1977Google Scholar

  • 55.

    Holloway P, Koch C, Knight G, et al. Energy efficient engine. High pressure compressor detail design report. NASA CR-165558, NASA, 1982Google Scholar

  • Please, wait while we are validating your browser

    Comments

    Leave a Reply

    Your email address will not be published. Required fields are marked *